home *** CD-ROM | disk | FTP | other *** search
- /* multiroots/hybridj.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
-
- #include <stddef.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <math.h>
- #include <float.h>
-
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_multiroots.h>
- #include <gsl/gsl_linalg.h>
-
- #include "dogleg.c"
-
- typedef struct
- {
- size_t iter;
- size_t ncfail;
- size_t ncsuc;
- size_t nslow1;
- size_t nslow2;
- double fnorm;
- double delta;
- gsl_matrix *q;
- gsl_matrix *r;
- gsl_vector *tau;
- gsl_vector *diag;
- gsl_vector *qtf;
- gsl_vector *newton;
- gsl_vector *gradient;
- gsl_vector *x_trial;
- gsl_vector *f_trial;
- gsl_vector *df;
- gsl_vector *qtdf;
- gsl_vector *rdx;
- gsl_vector *w;
- gsl_vector *v;
- }
- hybridj_state_t;
-
- static int hybridj_alloc (void *vstate, size_t n);
- static int hybridj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx);
- static int hybridsj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx);
- static int set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale);
- static int hybridj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx);
- static void hybridj_free (void *vstate);
- static int iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale);
-
- static int
- hybridj_alloc (void *vstate, size_t n)
- {
- hybridj_state_t *state = (hybridj_state_t *) vstate;
- gsl_matrix *q, *r;
- gsl_vector *tau, *diag, *qtf, *newton, *gradient, *x_trial, *f_trial,
- *df, *qtdf, *rdx, *w, *v;
-
- q = gsl_matrix_calloc (n, n);
-
- if (q == 0)
- {
- GSL_ERROR_VAL ("failed to allocate space for q", GSL_ENOMEM, 0);
- }
-
- state->q = q;
-
- r = gsl_matrix_calloc (n, n);
-
- if (r == 0)
- {
- gsl_matrix_free (q);
-
- GSL_ERROR_VAL ("failed to allocate space for r", GSL_ENOMEM, 0);
- }
-
- state->r = r;
-
- tau = gsl_vector_calloc (n);
-
- if (tau == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
-
- GSL_ERROR_VAL ("failed to allocate space for tau", GSL_ENOMEM, 0);
- }
-
- state->tau = tau;
-
- diag = gsl_vector_calloc (n);
-
- if (diag == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
-
- GSL_ERROR_VAL ("failed to allocate space for diag", GSL_ENOMEM, 0);
- }
-
- state->diag = diag;
-
- qtf = gsl_vector_calloc (n);
-
- if (qtf == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
-
- GSL_ERROR_VAL ("failed to allocate space for qtf", GSL_ENOMEM, 0);
- }
-
- state->qtf = qtf;
-
- newton = gsl_vector_calloc (n);
-
- if (newton == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
-
- GSL_ERROR_VAL ("failed to allocate space for newton", GSL_ENOMEM, 0);
- }
-
- state->newton = newton;
-
- gradient = gsl_vector_calloc (n);
-
- if (gradient == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
-
- GSL_ERROR_VAL ("failed to allocate space for gradient", GSL_ENOMEM, 0);
- }
-
- state->gradient = gradient;
-
- x_trial = gsl_vector_calloc (n);
-
- if (x_trial == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
-
- GSL_ERROR_VAL ("failed to allocate space for x_trial", GSL_ENOMEM, 0);
- }
-
- state->x_trial = x_trial;
-
- f_trial = gsl_vector_calloc (n);
-
- if (f_trial == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
-
- GSL_ERROR_VAL ("failed to allocate space for f_trial", GSL_ENOMEM, 0);
- }
-
- state->f_trial = f_trial;
-
- df = gsl_vector_calloc (n);
-
- if (df == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
- gsl_vector_free (f_trial);
-
- GSL_ERROR_VAL ("failed to allocate space for df", GSL_ENOMEM, 0);
- }
-
- state->df = df;
-
- qtdf = gsl_vector_calloc (n);
-
- if (qtdf == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
- gsl_vector_free (f_trial);
- gsl_vector_free (df);
-
- GSL_ERROR_VAL ("failed to allocate space for qtdf", GSL_ENOMEM, 0);
- }
-
- state->qtdf = qtdf;
-
-
- rdx = gsl_vector_calloc (n);
-
- if (rdx == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
- gsl_vector_free (f_trial);
- gsl_vector_free (df);
- gsl_vector_free (qtdf);
-
- GSL_ERROR_VAL ("failed to allocate space for rdx", GSL_ENOMEM, 0);
- }
-
- state->rdx = rdx;
-
- w = gsl_vector_calloc (n);
-
- if (w == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
- gsl_vector_free (f_trial);
- gsl_vector_free (df);
- gsl_vector_free (qtdf);
- gsl_vector_free (rdx);
-
- GSL_ERROR_VAL ("failed to allocate space for w", GSL_ENOMEM, 0);
- }
-
- state->w = w;
-
- v = gsl_vector_calloc (n);
-
- if (v == 0)
- {
- gsl_matrix_free (q);
- gsl_matrix_free (r);
- gsl_vector_free (tau);
- gsl_vector_free (diag);
- gsl_vector_free (qtf);
- gsl_vector_free (newton);
- gsl_vector_free (gradient);
- gsl_vector_free (x_trial);
- gsl_vector_free (f_trial);
- gsl_vector_free (df);
- gsl_vector_free (qtdf);
- gsl_vector_free (rdx);
- gsl_vector_free (w);
-
- GSL_ERROR_VAL ("failed to allocate space for v", GSL_ENOMEM, 0);
- }
-
- state->v = v;
-
- return GSL_SUCCESS;
- }
-
- static int
- hybridj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx)
- {
- int status = set (vstate, fdf, x, f, J, dx, 0);
- return status ;
- }
-
- static int
- hybridsj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx)
- {
- int status = set (vstate, fdf, x, f, J, dx, 1);
- return status ;
- }
-
- static int
- set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale)
- {
- hybridj_state_t *state = (hybridj_state_t *) vstate;
-
- gsl_matrix *q = state->q;
- gsl_matrix *r = state->r;
- gsl_vector *tau = state->tau;
- gsl_vector *diag = state->diag;
-
- GSL_MULTIROOT_FN_EVAL_F_DF (fdf, x, f, J);
-
- state->iter = 1;
- state->fnorm = enorm (f);
- state->ncfail = 0;
- state->ncsuc = 0;
- state->nslow1 = 0;
- state->nslow2 = 0;
-
- gsl_vector_set_all (dx, 0.0);
-
- /* Store column norms in diag */
-
- if (scale)
- compute_diag (J, diag);
- else
- gsl_vector_set_all (diag, 1.0);
-
- /* Set delta to factor |D x| or to factor if |D x| is zero */
-
- state->delta = compute_delta (diag, x);
-
- /* Factorize J into QR decomposition */
-
- gsl_linalg_QR_decomp (J, tau);
- gsl_linalg_QR_unpack (J, tau, q, r);
-
- return GSL_SUCCESS;
- }
-
- static int
- hybridj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx)
- {
- int status = iterate (vstate, fdf, x, f, J, dx, 0);
- return status;
- }
-
- static int
- hybridsj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx)
- {
- int status = iterate (vstate, fdf, x, f, J, dx, 1);
- return status;
- }
-
- static int
- iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale)
- {
- hybridj_state_t *state = (hybridj_state_t *) vstate;
-
- const double fnorm = state->fnorm;
-
- gsl_matrix *q = state->q;
- gsl_matrix *r = state->r;
- gsl_vector *tau = state->tau;
- gsl_vector *diag = state->diag;
- gsl_vector *qtf = state->qtf;
- gsl_vector *x_trial = state->x_trial;
- gsl_vector *f_trial = state->f_trial;
- gsl_vector *df = state->df;
- gsl_vector *qtdf = state->qtdf;
- gsl_vector *rdx = state->rdx;
- gsl_vector *w = state->w;
- gsl_vector *v = state->v;
-
- double prered, actred;
- double pnorm, fnorm1, fnorm1p;
- double ratio;
- double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001;
-
- /* Compute qtf = Q^T f */
-
- compute_qtf (q, f, qtf);
-
- /* Compute dogleg step */
-
- dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx);
-
- /* Take a trial step */
-
- compute_trial_step (x, dx, state->x_trial);
-
- pnorm = scaled_enorm (diag, dx);
-
- if (state->iter == 1)
- {
- if (pnorm < state->delta)
- {
- state->delta = pnorm;
- }
- }
-
- /* Evaluate function at x + p */
-
- {
- int status = GSL_MULTIROOT_FN_EVAL_F (fdf, x_trial, f_trial);
-
- if (status != GSL_SUCCESS)
- {
- return GSL_EBADFUNC;
- }
- }
-
- /* Set df = f_trial - f */
-
- compute_df (f_trial, f, df);
-
- /* Compute the scaled actual reduction */
-
- fnorm1 = enorm (f_trial);
-
- actred = compute_actual_reduction (fnorm, fnorm1);
-
- /* Compute rdx = R dx */
-
- compute_rdx (r, dx, rdx);
-
- /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */
-
- fnorm1p = enorm_sum (qtf, rdx);
-
- prered = compute_predicted_reduction (fnorm, fnorm1p);
-
- /* Compute the ratio of the actual to predicted reduction */
-
- if (prered > 0)
- {
- ratio = actred / prered;
- }
- else
- {
- ratio = 0;
- }
-
- /* Update the step bound */
-
- if (ratio < p1)
- {
- state->ncsuc = 0;
- state->ncfail++;
- state->delta *= p5;
- }
- else
- {
- state->ncfail = 0;
- state->ncsuc++;
-
- if (ratio >= p5 || state->ncsuc > 1)
- state->delta = GSL_MAX (state->delta, pnorm / p5);
- if (fabs (ratio - 1) <= p1)
- state->delta = pnorm / p5;
- }
-
- /* Test for successful iteration */
-
- if (ratio >= p0001)
- {
- gsl_vector_memcpy (x, x_trial);
- gsl_vector_memcpy (f, f_trial);
- state->fnorm = fnorm1;
- state->iter++;
- }
-
- /* Determine the progress of the iteration */
-
- state->nslow1++;
- if (actred >= p001)
- state->nslow1 = 0;
-
- if (actred >= p1)
- state->nslow2 = 0;
-
- if (state->ncfail == 2)
- {
- {
- int status = GSL_MULTIROOT_FN_EVAL_DF (fdf, x, J);
-
- if (status != GSL_SUCCESS)
- {
- return GSL_EBADFUNC;
- }
- }
-
- state->nslow2++;
-
- if (state->iter == 1)
- {
- if (scale)
- compute_diag (J, diag);
- state->delta = compute_delta (diag, x);
- }
- else
- {
- if (scale)
- update_diag (J, diag);
- }
-
- /* Factorize J into QR decomposition */
-
- gsl_linalg_QR_decomp (J, tau);
- gsl_linalg_QR_unpack (J, tau, q, r);
- return GSL_SUCCESS;
- }
-
- /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|, v = D^2 dx/|dx| */
-
- compute_qtf (q, df, qtdf);
-
- compute_wv (qtdf, rdx, dx, diag, pnorm, w, v);
-
- /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */
-
- gsl_linalg_QR_update (q, r, w, v);
-
- /* No progress as measured by jacobian evaluations */
-
- if (state->nslow2 == 5)
- {
- return GSL_ENOPROGJ;
- }
-
- /* No progress as measured by function evaluations */
-
- if (state->nslow1 == 10)
- {
- return GSL_ENOPROG;
- }
-
- return GSL_SUCCESS;
- }
-
-
- static void
- hybridj_free (void *vstate)
- {
- hybridj_state_t *state = (hybridj_state_t *) vstate;
-
- gsl_vector_free (state->v);
- gsl_vector_free (state->w);
- gsl_vector_free (state->rdx);
- gsl_vector_free (state->qtdf);
- gsl_vector_free (state->df);
- gsl_vector_free (state->f_trial);
- gsl_vector_free (state->x_trial);
- gsl_vector_free (state->gradient);
- gsl_vector_free (state->newton);
- gsl_vector_free (state->qtf);
- gsl_vector_free (state->diag);
- gsl_vector_free (state->tau);
- gsl_matrix_free (state->r);
- gsl_matrix_free (state->q);
- }
-
- static const gsl_multiroot_fdfsolver_type hybridj_type =
- {
- "hybridj", /* name */
- sizeof (hybridj_state_t),
- &hybridj_alloc,
- &hybridj_set,
- &hybridj_iterate,
- &hybridj_free
- };
-
- static const gsl_multiroot_fdfsolver_type hybridsj_type =
- {
- "hybridsj", /* name */
- sizeof (hybridj_state_t),
- &hybridj_alloc,
- &hybridsj_set,
- &hybridsj_iterate,
- &hybridj_free
- };
-
- const gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridj = &hybridj_type;
- const gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridsj = &hybridsj_type;
-